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CHAPTER 1 

INTRODUCTION 

The scattering of elastic waves by an inhomogeneity embedded in an 

infinite homogeneous isotropic elastic medium has been studied by 

numerous investigators. An "inhomogeneity" is a region in which dif- 

ferent material properties from its surrounding medium exist. Eshelby 

[1,2] developed the method of equivalent inclusion to determine the 

elastic field of an ellipsoidal inclusion. An "inclusion" is considered 

to be a region which has the same geometric shape and dimension as the 

inhomogeneity but the same material properties as its surrounding medium 

after an eigenstrain is imposed within that region. Ma1 and Knopoff 

[3] appeared to be the first in applying Eshelby's result to form the 

scattering theory of a single sphere. Subsequently, Gubernatis [4] 

also used Eshelby's result to study the long-wave scattering of elastic 

waves for an ellipsoidal inhomogeneity. In the above studies Eshelby's 

solution for the static displacements was used as the first approxima- 

tion in the iteration. 

Wheeler and IMura [S] first applied the concept of eigenstrain to 

study composite materials, in which they considered the difference in 

elastic moduli between the inhomogeneity and matrix. Subsequently, 

Fu [6] presented a formulation for the elastodynamics field of two 

ellipsoidal inhomogeneities embedded in an infinite elastic medium sub- 

jected to plane time-harmonic waves. He [7] later gave a complete 

formulation in extending the method of equivalent inclusion to dynamic 
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elasticity and gave some results for three-layered and five-layered 

media subjected to plane time-harmonic longitudinal waves. The scat- 

tering of plane waves by an ellipsoidal inhomogeneity is presented in 

The scattering of a plane compressional wave by a spherical inhomo- 

geneity in an infinite elastic medium has been studied by Ying and 

True11 [lo] and by Pao and Mow [ll]. They used the method of separation 

of variables to solve the wave equation which describes the incident, 

reflected (scattered) and refracted waves inside and outside the spheri- 

cal inhomogeneity. Because the solutions are expressed by a spherical 

coordinate and the inside and outside scattering field can match exactly 

along the boundary of the spherical inhomogeneity, the results by this 

method are considered as exact solutions. Some numerical results of 

the elastic scattering cross section were shown by Johnson and True11 

r121 J and some dynamical stress concentration factors around a spheri- 

cal cavity were found by Pao and Mow [14]. 

This research is concerned with numerical calculations according 

to the extended method of equivalent inclusion by Fu [6-91, and a com- 

parison with the exact solutions. Two cases are studied here. The 

first case is concerned with the three-layered problem and the other 

case is concerned with the spherical inhomogeneity problem. Results 

by the direct integration method for the three-layered problem and the 

method of separation of variables for the spherical inhomogeneity 

problem are compared with those obtained by the extended method of 

equivalent inclusion applied on the two cases. 
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CHAPTER2 

WAVE MOTION IN AN ELASTIC MEDIUM 

2.1. Governing Equation 

Consider the infinitesimal element of an elastic body with mass 

density o in the absence of body forces, the equations of motion are 

. . 
‘jk,k = p u. 

J (11 

where a dot indicates a differentiation with respect to time while a 

subscript comma indicates spatial differentiation. 

If the elastic material is linear and homogeneous, the stress- 

strain relation is 

ojk =c jkrsers (21 

where C jkrs are the elastic constant. 

If the elastic material is isotropic, then the independent elastic 

constants are reduced to two and 

C jkrs =X6 jk 'rs ' ~(6 jr 'ks + 'js 'kr) (31 

where 1,~ are Lame's constants and 6 
9 

are kronecker's delta. 

Substituting eqs. (2.1.2)(2.1.3) into eqs. (2.1.1) the equations 

of motion in terms of the displacements are obtained as follows: 

(X+~) Uj ji + ~ 'i jj = p 'i 
, , 

or, in vector notation as: 
0 

(X+)l) vv - iJ + l&J = p 3 

(41 

(51 
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where V is the vector differential operator. 

The displacement vector 3 can be decomposed as 

d=V$+nx;, V.&O. 

where the $ and $ are the scalar and vector displacement potentials, 

respectively. 

A substitution of eqs. (2.1.6) into eqs. (2.1.5) leads to 

2 . . . . 
V[(X+2dV + - P $1 +vx[pv2;-p& =o 

(61 

(7) 

and the J, and t satisfy the wave equations 

v2; = f f$ (9) 
VT 

in which 2 v L = (X+Zu)/p and vi = I-I/P are the velocities of longitudinal 

waves and shear waves, respectively. 

2.2. Initial and Boundary Conditions 

In the above section the general wave equations in the absence of 

body forces have been mentioned without considering external forces. 

Usually the external force can be treated as an internal or surface 

source (incident wave), or in the form of initial conditions (impulses) 

and boundary conditions (displacement or force or mixed boundary condi- 

tions). Here the external force from sources, i.e. incident waves, will 

be discussed. 

If the incident waves are assumed to be plane waves, in general 

they are composed of compressional and shear waves. When the incident 
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waves move in an elastic medium, the compressional and shear waves will 

propagate independently. But they can not travel independently if there 

is an inhomogeneity in the elastic medium. When the incident waves im- 

pinge on the inhomogeneity, compressional and shear waves will be re- 

flected back into the matrix while the same types of waves will be re- 

fracted into the inhomogeneity. Both the reflected and refracted waves 

must satisfy the general wave equations. If the elastic inhomogeneity 

is bounded to the matrix at all times, then the tractions and displace- 

ments must be continuous at the interface between the inhomogeneity and 

matrix. 

2.3. Time-harmonic Wave Problem 

If the incident waves are time-harmonic, then the reflected and re- 

fracted waves will also be time-harmonic waves of the same angular fre- 

quency. Therefore, the displacement of all the waves can be represented 

by 

tf(G,t) = U(G) exp(-iwt)Zu (1) 

where w is the angular frequency and gu is the unit vector in the direc- 

tion of wave propagation. 

The scalar and vector displacement potentials are 

4J cz t) = $[G) exp(-iwt) 

w, t> = $(YF) exp(-iwt)Z+ 

where $ 
0 

is the unit vector in the direction of shear wave. 

Substituting eqs. (2.3.2)(2.3.3) into eqs. (2.1.8)(2.1.9), the 

(2) 

(3) 
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wave equations are .reduced to 

(V2 + a2) Q(G) = 0 (4) 

(v2 + B2) f$(S) = 0 (51 

where CL=W/V~, B=w/vT are the wavenumber of longitudinal and shear waves, 

respectively . 
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CHAPTER3 

INHOMOGENEITY PROBLEMS 

3.1. Transmission and reflection of waves in an infinite three-layered 
medaum 

A plane compressional incident wave which is simple harmonic is 

assumed to propagate in a three-layered medium. The geometry and ma- 

terial properties of the medium are shown in Fig. 1. The displacement 

of the incident wave is 

@I 
2 = U. exp(ikf - i,t)$ (11 

where U. is the amplitude and k, w are wavenumber and angular frequency, 

respectively. Zz is the unit vector in the positive direction of z-axis, 

i.e. plane wave propagation. 

3.1.1. Integration of the governing differential equation 

When the plane compressional incident wave impinges on the inter- 

face between the elastic inhomogeneity (medium II) and its surrounding 

medium (medium I), a compressional wave is reflected back into the 

medium I, while a compressional wave is transmitted into region 111[13]. 

For convenience of the ensuing discussion, the displacements and stresses 

associated with the incident, reflected, refracted and transmitted waves 

will be designated by the superscript (i), (r), (f) and (t). Details 

for incident compressional plane waves along the +z axis are given below. 

The displacement of these waves are 

,(il 
2 = Uo exp($z - iwt) 

u(rl = 
2 -Aexp(-ialz - iwt) 

(11 

(21 



u(t) 
z = B exp(ialz - iwt) (3) 

u (fl 
z = Ucf)(z) exp(-iwt) (4) 

where Uo, A, B are the amplitude of the incident, reflected and trans- 

mitted waves, respectively. 2 a 1 = w2/v; = plw2/(hl+2ul), where the sub- 

script 1 denotes the matrix. 

The displacement function U (f)'(z) should satisfy the wave equation 

(V2 + a22 )U(z> = 0 (51 

where a 2 P2W2 

2 (x l 2lJ I and the subscript 2 refers to the inhomo- 
2 2 

geneity. 

For the simple case chosen, U (f) (z) are obtained as 

df) (z) = Ccosa2z + Dsina2z (61 

where C, D are constants. 

The stresses associated with the above displacements are 

G> 
Ozz = ial(Xl+21-(l) U. exp(ialz - iwt) 

(r) = 
Ozz -iol(X1+2pl) A exp(-ialz - iwt) 

Jtl 
zz = ial(Al+2v1) B exp(ialz - iwt) 

Jfl 
zz = a2(12+2p2)(-Csina2z + Dcosa3z) 

(7) 

(8) 

(9) 

(10) 

The stresses and displacements must be continuous at the inter- 

face. Thus at z = - 6/2 the continuity conditions are 

,lil+ u(rl = ,If3 
Z Z (111 

$1 = Jf) 
zz zz (121 
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and at z = 6/2 the continuity conditions are 

(13) 

(14) 

These continuity conditions give four simultaneous equations in 

terms of four unknown coefficients A, B, C and D. After solving the 

simultaneous equations, the unknowns A, B, C, D are found to be: 

a 6 
cos-$ . a26 San- 

A=Uoexp(-ialB)[l - L L 
a26 a28 a 6 a 6 2l 

(151 
2 coy- -im sin7 sin- 2 +i&K cos2 

a 6 2 
B=Uoexp(-ialG)[ 

C=Uoexp(-ialB/2) / (co* - iv%i sin+ a26 

a26 a 6 
D=-Uoexp(-ialb/2) / (sin7 + iJfi; CO.S$-) 

(16) 

(17) 

(181 

where f = (X2+2~2)/(Xl+2~1) and h = p2/pl . 

The displacements and stresses in the whole medium can be obtained 

by using equations (l-4) and equations (7-lo), respectively. 

3.1.2. Extended Method of Equivalent Inclusion 

The equations of motion for the inhomogeneity and the matrix are: 

ojk,k = '1 ii j matrix (11 

ojk,k = '2 ii j inhomogeneity (2) 
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The stress-strain relations are: 

=jk = cg 8 rs matrix (31 

‘jk = cj';;, E rs inhomogeneity (4) 

where pl, ,m 
jkrs and p2, (2) C. Jkrs are mass density and the elastic constants 

for 

the 

the matrix and the inhomogeneity, respectively. 

Replacing the inhomogeneity with an equivalent inclusion which has 

same material properties as the surrounding matrix after an eigen- 

strain is imposed in the inclusion, the governing equations are equations 

(1,3) and 
. . 

cjk,k = '1 'j inclusion (51 

'jk = c;;;, ee rs inclusion 

e * 
E E rs = rs - ErS 

(61 

(71 

e * 
where E rs' crs' %s are the total strain, elastic strain and eigen- 

strain, respectively. 

The equivalence conditions derived and given in [7,9] are: 

AC ,(d 
jkrs rs + Cii& e*(I) = - ACjkrs ela) inside the inclusion rs rs (81 

Ap jcrn) + c;;is E;~I;' = - Ap i '"I 
j 

inside the inclusion 
3 (9) 

where AC jkrs = C$ii - Cj:& , Ap = p2 - cl and 

,Ul * 
jkrs ers,k (10) 

(11) 
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where the superscripts lrrnlr and "a" denote field that is induced by the 

presence of mis-match and that is applied. 

Equations (3.1.2.5-3.1.2.11) are the general equations for the 

equivalent inclusion with no restrictions on the geometric shape of the 

inclusion, i.e. these equations can be applied to an inclusion of arbi- 

trary geometry. 

For the three-layered problem, the equivalence conditions are re- 

duced to 

1 m Aw2 ; b$.,[OIAn + OA1) [OlB,l + CA1 + 2ul)Ao = -Apw2Ho 
n=o 

h Aow2 
m 
1 [dl' PIA n n + 'n (2)[O]Bn] + (X1 + 2Pl 

n=o 
>A1 = -Aow2Hl (12) 

. . . . . . . . . . . . . . . . . . . 

& Aw2 
m 
1 dml EOIA n n + @n (m+ll[O]Bn] + (X1 + 29)Am = -Aow2Hm 

n=o 

and 

&(AA+2Ap) y [@;+]An+4;') . [O]B,] + (X1+2~l)Bo = -(AX+2Ap)Eo 
n=o 

+AX+2Ap) 7 [O;2)[O]An+$;3) [O]B,] + (Xl+2cll)Bl = -(AX+2Au)El (13) . n=o 

..,................- 

$(AX+2Ap) F [$yl)[O]An+,p+') [O]B,] + (5+2QBm = -(AX+2Ap)Em 
n=o 
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where : 4,(z) = & /‘i (zf)neiallz-z’ Idzt 
1 

dk 
2 

L$p (z) = - dzk ‘n(‘) 

AX = X2 - Xl 

(ia > m 

Hm = m: '0 

(ia 1 m+l 

Em = A! '0 

The eqs. (3.1.2.12) and (3.1.2.13) give 2(m+l) simultaneous equa- 

tions, having matrix dimensions of 2(m+l) x 2(m+l) if matrix represen- 

tation is used. 

The displacement and strain fields inside and outside the equiva- 

lent inclusion are: 

Uz(z,tl = UZ(t) exp(-iwt) (14) 

Uz(zl = : [A,~,(z) + Bn$!pl + Uoe ialz 
n=o 

(151 

EZZ(Z,tl = EZz(z> exp(-iwt) (161 

EZZ(Z) = 7 b#,(z) + B,$;(z> ] + ialUoe ialz 
n=o 

and the stress fields are: 

~zZ(z,tl = ~Zz(z> eq(-iwt> 

CZZ(Z> = 01 + 2111) Ezz(Z> 

azz(z) = 02 + 2u2) Ezz(Z> 

matrix 

inclusion 

(17) 

(181 

(19) 

(20) 
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Evaluation and integration of the $n-integrals are shown in 

Appendix I. 

3.2. Scattering of waves by a spherical inhomogeneity 

A plane compressional incident wave which is simple harmonic is 

assumed to move in the positive z-axis in an infinite elastic medium 

where an elastic spherical inhomogeneity is embedded. The configuration 

of the whole domain is shown in Fig. 2. The displacement of the inci- 

dent wave is 

+ i) U( Z = U. exp(iaz - iwt)gz (1) 

where U. is the amplitude and a, w are the compressional wavenumber 

and angular frequency, respectively, and gz is the unit vector in the 

positive direction of the z-axis. 

In this section two methods, the separation of variables ap- 

proaches and the extended equivalent inclusion method, are used to 

determine the displacements and stresses of the reflected (scattered) 

waves. Then, two measurable physical quantities, differential scat- 

tering cross section and the total scattering cross section far from 

the inhomogeneity, will be expressed in terms of the scattered asymp- 

totic values. The differential scattering cross section dP(w)/dQ [4] 

is a measure of the frwtion of incident power scattered into a parti- 

cular direction, where da is the differential element of solid angle. 

The total scattering cross section P(w) is the ratio of the average 

power flux scattered into all directions to the average intensity of 

the incident fields. 
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3.2.1. Method of separation of variables 

In this section, the work by Ying and True11 [lo] and that by 

Pao and Mow [ll] will be briefly introduced. 

When a plane compressional incident wave impinges on the surface 

of the elastic inhomogeneity, scattering occurs. Both compressional 

and shear waves are reflected back into the matrix (Medium I) while 

the same types of waves are refracted into the inhomogeneity (Medium II). 

The potentials, displacements and stresses associated with the incident, 

reflected and refracted waves are denoted by the superscript (i), (r) 

and (f). The wave equations in terms of potentials are 

(V2 + al’) Qcil = 0 
(11 

(02 + $2) p = 0 

(V2 + a12) I#(~) = 0 

(02 + fi12) p = 0 

(V2 + a22) $(f) = 0 

(V2 + 8,2) +(f) = 0 

where 2 
al = lJlw2/(~l+21Jl) , B12 = P~~/Y~ , aZ2 = P2W2/ 02+21J2), 

B2 
2 = P2W2h2 * 

The displacement of the incident wave is 

,W 
Z = U. exp(ialz - iwt) 

(3) 

(4) 
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and the associated potential functions are 

$(i) ‘0 = a exp(ial2) 
1 

$(il can further be represented in terms of a spherical coordinate 

function 

$(il = : nTo(*n+l)in jn(alr) P (cos0) n = 

(61 

where jn(x) are the spherical Bessel functions of the first kind, and 

P,(x) are Legendre polynomials. 

Because of axisymmetry of this problem, displacements, stresses 

and potential functions are independent of the spherical coordinate 0. 

Therefore, after solving the wave equations, the potentials of the re- 

flected wave are [12]: 

(7) 

JI b-1 = y (-i)“+l 
n=o 

a(2n+l)An hn(alr)Pn(cosB) 

,Crl = f (-i)n+l 
n=o 

a(2n+l)Bn h,(Blr)P,(cosB) 

(8) 

(9) 

where h,(x) are the spherical Hankel functions of the first kind. 

For the refracted wave inside the inhomogeneity the potentials are 

[12]: 

$Cfl = y (-i)n+l 
n=o 

a(2n+l)Cnjn(a2r)Pn(cosf3) 

n=o 
a(2n+l)Dnjn(G2r)Pn(cos8) 

(10) 

(11) 
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The resultant waves in the medium I and medium II are 

4) = 4 (i> + p 

The general representation of displacements and stresses in terms 

of the potential functions $, 0 can be found in [lS]: 

A2 “r ar + +,O) 

O9e 
= 2p[- 1 w I)+-- +~D$--w- cot0 '3qJ 

r ar r2 ' r2 aa 

(16) 

(18) 

(19) 

c0te a +- 
r +$I - $ +I 

u 
r9 = J!] (20) 

B2-2a2 
= 2u[- 2 Q + l aQ --+ cot9 a$ D94 c0te a 

% r ar 
--•+e- 

r2 ae r2 r - G D,41 121) 

1 a where Dr = rar and D, 1 
% = sine a0 sin0 For the incident field, 

JI = QCi) , +=O, a=al, 6'61. For the reflected field, Q = Q(r), $=+cr), 

a=al, B=B For the refracted field, Q=+ (f) 1 * , (J=$(~), a=a2, 8=B2 . 
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Consider the boundary conditions at r=a 

,(il 
r + ,Cr) = u(f) 

r r (221 

(23) 

.(i) 
rr 

+ $1 
rr 

= $3 
rr (24) 

.(i> 
r0 + 0:;' = $' (25) 

Substituting eqs. (7-11) and eqs. (16-21) into the above continuity 

equations will form four simultaneous equations. After solving these 

equations, the unknowns A,, Bn, C n, Dn will be obtained. Thus, the 

elastic field inside and outside the inhomogeneity can be determined. 

The total scattering cross section far from the inhomogeneity is 

[12]: 

p (4 = 47-ra2 Y (2n+l) [jAnI + n(n+l) 
n=o 

s bni21 

and P(w) can be normalized as 

P(w) = 4 y (2n+l)[lAn12 + n(n+l) - 
n=o 

;: bn121 

(26) 

(271 

3.2.2. Extended Method of Equivalent Inclusion 

The eqs.(3.1.2.1 - 3.1.2.11) are general equations by this method 

and can be applied to the inhomogeneity problem of arbitrary geometry 

[7-91. The equivalence conditions are recorded here as follows: 

& Apw' . [fsj[O]Aj + fsjk[O]Ajk+...+Fskj[O]Bkj + Fskji[O]Bkjg+...] 

+A = S - A&Hs Cl) 
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& Apu2[f . sj,p['lAj + fsjk,p[“IAjk*“.‘Fskj,p[OIBkj + Fskja,p[OIBkje+. e s] 

+A 
sP 

= -Apu2H 
sP (2) 

. . . . . . . . . . . . . . . . . . . . . . . . 

&- AX6 [d . St mj [OIAj + dmjk [OIAjk** . sCDmjk [“IBjk’Dmijk [‘I Bijkcs . * I 

+ & 2Au[d . stj [‘I’j + dstjk[‘IAjk+. . .CDstjk[OIBjk’Dstjki [OIBjki+‘. ‘1 

+ CX1GStBm+2v B 1 St) = -WstEm + 2AuEstl (31 

mj , p[OIAj+dmjk T[OIAjk+‘..+Dmmjk p[OIBjkCDmmijk p[“lBijk’...l J , , 

+ b2Au[d . stj , p[OIAj+dstjk p[OIAjk+.**+Dstjk p[‘IBjk’Dstjki,p[‘IBjki+“‘! , > 

+ (A 6 1 stBmmp +2v B 1 stp) = - WstEmp + 2bEstp) (4) 

. . . . . . . . . . . . . . . . . . . . . . . 

where: AP = p2 - p1 , AA = A2 - A1 , Au = u2 - !+ 

HS = u. s=3 

= 0 otherwise 

H = iaU 
sP 0 s=3 p=3 

= 0 otherwise 

Emn = iaUo m=3 n=3 

= 0 otherwise 

E 
mP 

= -Uoa2 m=3 n=3 p=3 

= 0 otherwise 
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4~plw2fjs[‘I = -[~129’js + ~,js -  ~,jsl 

4trplw2f jskfl r = -[fl124k6js + 'k,js - 'k,js] 

- 2'19$ skj s + 'ulee,kjsl 

4ywtd mnj [~I = - B12[~,n6jm + +,m6jn + ',jmn - ',jmn' 

4rPlw2d mjk[‘l = - @12[@k,n6jm + +k,m’jn + $k,jmn - $k,jm] 

2 
4nplw DWk[fl = 2~1 [9,kjmn-~,kjmn I-u1’12 14, jn’b+4,mj ‘knl 

2 
- 'la1 $,mn6jk 

4*plw2D mnijk[;rI = 2~1[*k,ij~-~k,ij~l-~1812[$k,insjm+~k,mi6jn] 

- X a 2$ 1 1 k,mn'ij 

where the C+ and $-integrals and their derivatives are evaluated for a 

sphere by using the method given in [8] and are listed in Appendix II. 

From Appendix 11, fs jk 1’1 s Fsjk [OI J fsj ,p [Ol, Fskj Il,p [‘I 9 dstj 101 t 
D stjki[O], dstjk,p[O] and Dstjk,p[O] are equal to zero. Then eqs. 

(3.2.2.1 - 3.2.2.4) can therefore be much simplified. 

If one assumes a two term expansion in the eigenstrains, then 

eqs. (3.2.2.1) and eqs. (3.2.2.4) will form 21 simultaneous equations 

while eqs. (3.2.2.2) and eqs. (3.2.2.3) will form another 15 simultaneous 
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equations. The two sets of simultaneous equations are uncoupled. 

Solving the two set simultaneous equations for A., A. B. and 
3 lk' Jk 

B. JkQ' 
the displacements of the scattered 

Urn&t) = [zmjAj + imjkAjk + gmkjLBkjL + 

wave can be written as [8,9] 

F' .B .]exp(-iwt) 
mkl kJ (51 

where: 4nplwZf> 
mj 

4rrPlW2Z mjll = 

2' 2' 
~TP~‘JJ F*j = - [Ala1 $,m$j 2' 

+ 2'1B1 ',k6mj 

> 
- "l',mkj +2l.d 1 ,mkJ -1 

2' 
4a~lw F*jil = 

2' 
-['la1 'E,m6kj 

2' 
+ 2P181 'E,k'mj 

> 
- 2PlgQ,mkj + 2lJ i -1 1 e,mk] 

where: 
$[;I = fjf exp(;lR1 dv' + r outside 51 

52 

exp CialRl 
@i = f/f, 5 R dV' s outside s2 

> exp (ialRl 
%t...S 

[G] = /J/, xix;..."; R dV' g outside Q 

> 
@,ke...s 

n 
G outside 52 

&@I = if-f, Xi 
exp(iBlR) dV, 

? outside R R 



21 

L...S 
exp(i8lR) 

[;] = j-11, x;xk...xJ R dV' G outside Q 

6 ,kR...s 13 = ;xkax,. . . xs 5 El 

& lfl + - the far field value of Urn can be expressed as [9]: 

expialr expiBlr 
'm = 'rn r + Dm r 

and the associated far field stress are 

expialr 
u = iXla1 r 'k'k%n 

expia r 
+ ipl[al r I. (C,$ + C,I1,) 

+ 81 
expi8lr 

r (DmEn + Dn’lml 1 

where II k are direction cosines. 

The differential scattering cross section is therefore [9] 

and the total scattering cross section is 

P(W) = jvdn 

and P(w) can be normalized as 

(61 

(7) 

(91 

Some important volume integral calculations are shown in Appendix II. 
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CHAPTER 4 

COMPARISON OF COMPUTATIONAL RESULTS 

In this chapter numerical results are presented and compared for 

the three-layered and spherical inhomogeneity problems. Numerical 

results were made known by True11 and his co-workers for a perfect 

spherical inhomogeneity. In order to compare with these results, the 

same material properties are used and listed in Table 1. 

Table 1. Material Properties 

Compressional shear wave 
Material wave velocity velocity Mass density 

(m/s> b_/s>. .Wcm3) .----__ 

Stainless Steel 5790 3100 7.90 
Mg 5770 3050 1.74 
Al 6568 3149 2.70 
Ge 5285 3376 5.36 

Polyethylene 1950 540 0.90 
Be 12890 8880 1.87 

When the extended equivalent inclusion method is used, there are 

complex matrices, with dimensions depending upon the dimensionless 

wavenumber and the differences in elastic constant and mass density 

between the inhomogeneity and the matrix, need to be solved. In some 

cases, the dimension of the matrix are so large that the numerical 

error can be relatively high. In order to get the best results, the 

IMSL(Internationa1 Mathematical and Statistical Libraries) subroutine 

LEQ2C is used to solve matrices with double precision. The routine 

applies iterative improvement until the solution is accurate to machine 
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precision. If the matrix is too ill-conditioned to get effective itera- 

tive improvement, a terminal error is produced. 

4.1. Three-Layered Medium Problem 

The input parameters for both methods are the dimensionless wave- 

number a 1 6, the relative ratio of elastic constants f and mass density 

h, where f is (X2+2u2)/(Xl+2ul) and h is 02/ol. The displacement ampli- 

tude U. and the stress amplitude (Xl +2pl)alUo given in the preceding 

figures are nondimensionalized. 

The calculation of the exact solutions is simple and the dimension 

of the matrix is just 4x4. The calculation of the equivalent inclusion 

method is relatively complicated. The solution is an infinite series 

summation, and Nf(the accepted number of terms to get convergent results) 

depends on a16, f and h. In the calculation of the displacements and 

stresses from Eqs. (3.1.2.14 - 3.1.2.20), the summation is considered 

to be acceptable until the ratio of the current term to the current 

partial term is less than 0.5%. 

In order to make detailed comparison, three cases are studied 

here. The first case considers the difference in elastic constants, 

i.e. f#l and h=l. Fig. 3-7 and Fig. 8-12 display the displacement 

amplitude and stress amplitude vs al6, respectively. The second case 

considers the difference in mass density, i.e. f=l and h#l. Fig. 13-17 

and Fig. 18-22 display the displacement amplitude and stress amplitude 

vs al&. The last case considers the difference both in elastic 

constants and mass density. Fig. 23-27 and Fig. 28-32 display the 

displacement amplitude and stress amplitude vs al&. From the results, 

it is found that the extended method of equivalent inclusion gives 
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excellent results which can be treated as the exact solutions. The 

values of Nf in getting the convergent displacement and stress ampli- 

tude in the third case are listed in Table 2. 

Table 2. The Value of Nf for the Three-Layered Problem 

Ge in Al Al in Ge Polyethylene in Be Mg in St St in Mg 
a16 f=1.285 f=0.778 f=90.790 f=0.219 f=4.572 

h=1.985 h=0.504 h=2.078 h=0.220 h=4.540 

0.5 6 4 6 6 6 
1.0 6 6 6 6 8 
2.0 8 6 6 8 8 
4.0 12 8 8 10 12 
6.0 * 16 10 8 14 14 
8.0 18 14 8 16 18 

10.0 22 16 10 20 20 

4.2. Spherical Inhomogeneity Problem 

The input parameters are the dimensionless wave number ala, the com- 

pressional and shear wave velocity and the mass density of the inhomo- 

geneity and the matrix. 

For the method of separation of variables, the results of the scat- 

tering cross section were plotted in Truell's paper but the specific 

values for different ala are not listed. t 

For the equivalent inclusion method, there are two independent 

series summation. The first one is to get the inside function value 

in the eqs. (3.2.2.1 - 3.2.2.4), which are related to ala and 8lIal 

only. The second one is to get the outside function value in the eqs. 

(3.2.2.5 - 3.2.2.10), which also depends on ala and Bl/al. 

From the three-layered problem, it is known that the value of Nf 

YThe data shown in this section are calculated from the computer program 
kindly supplied by Dr. J. Gubernatis. 
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depends on a16, f and h. This is also true for the current problem. 

Besides, it is found that the value of Nf also depends on Bl/al. It 

should be noted that the dimension of the matrix is proportional to the 

value of Nf. Therefore, for large Nf, the dimension of the matrix will 

be very large and the derivation and numerical computation to get the 

scattering cross section is very lengthy and time-consuming. Instead 

of finding the scattering cross section for large ala, it is hoped to 

find the accepted value in what range of ala when Nf=l. Later, the 

result is called one-term solution when N f is equal to 1. The eqs. 

(3.2.2.1 - 3.2.2.4) are reduced to: 

Apw2[fsj[O]Aj + Fskj[O]Bkj] + A, = -Aou2Hs 

AX&St [dmj [OIAj + Dmjk [OIBjkI + 2’~ [dstj [‘l’j + Dstjk [‘I BjkI 

+ (X 6 1 stem + 35Bst) = -(AXG~~E~ + 2AuEst) 

(11 

(21 

From the formulas in Appendix II, it is found that F skj CO1 and 

d stj ['I are equal to zero, which make the eqs. (4.2.2.1) and (4.2.2.2) 

uncoupled, i.e. the difference in mass density and the difference in 

elastic constants will have no coupled effects. After some manipula- 

tion, it is found that the nonzero variables are A3, Bll, B22 and B33 

with Bll equal to B22 by symmetry. For low ala, the closed form 

solutions of these variables can be obtained and the closed form of the 

scattering cross section can also be obtained. 

Fig. 33-36 display the scattering cross section vs ala from two 

method. It is found if ala is less than 1, the tendency of the one 

term solution is good compared to the exact solution. For certain 
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material system the one-term solution represents a good approximation 

up to medium frequency range. The accuracy, however, is not good 

enough to produce relative errors less than 1% though ala goes down to 

0.01. The Fig. 37-40 display the comparison for the ala between 0.01 

and 0.1. It is therefore necessary to take more terms in the series 

for higher ala if this approach is to be used. 
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CHAPTER 5 

DISCUSSION AND CONCLUSION 

It is worth studying the numerical characteristics of the ex- 

tended method of equivalent inclusion. By doing this, we will know 

what kind of inclusion this method can be applied to. Because of the 

simplicity and low computer time, the three-layered problem is chosen 

first for studying. Fig. 41-50 display the displacement and stress 

amplitude vs al6, f and h, respectively. In these figures, the curves 

both for N(number of terms) = 6,12 and for the exact solution are 

shown. From these figures, it is found Nf will increase while al6 

or h increases or f decreases. Besides, the value of Nf for convergent 

stress amplitude is larger than the value for convergent displacement 

amplitude. It is also found that the displacement amplitude is less 

than the exact solution and the stress amplitude is larger than the 

exact solution at the larger al6 if N is less than N f' 
Though the acceptable numerical results of the equivalent inclusion 

method in spherical inhomogeneity are not obtained in this study, the 

one-term solution supplies a very good tendency at low wavenumber. It 

is expected when the two-term solution (N=2) are applied, the accuracy 

at low dimensionless wavenumber will be very good and it will also 

supply good tendency in higher dimensionless wavenumber. And if Nf 

is large enough for different inclusion, the value from this method 

should be very close to the exact solution as in the three-layered 

problem. 
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From the above study, it is found Nf will be large as the ai 

(or ala) or h or Bl/al is very large or f is very small. Therefore, 

the dimension of the complex matrices will also be very large, which 

will probably cause the numerical singularity (algorthmic singularity) 

in high ala range. The numerical singularity may be overcome after 

some numerical improvement skills are applied or other numerical methods 

are used. It is suggested that numerical scheme be carefully studied 

for large h, 31/a1 or small f at high wavenumber range. 



APPENDIX I 

EVALUATION OF SOME INTEGRALS FOR THE THREE-LAYERED PROBLEM 
29 

1.1. j-h (zt)neial '-" Id,, 
-h 

= (-l)"eiaZRn(ah) for z > h - 

= [(-l)"eiaz + e-iaz]~iah~n(&) - y [l + (-l)r] n!z 
n-r 

r=o (n-r)!(ia) r+l 

for -h <z <h - - 
= e -iazRn(ah) for z c-h - 

Rn(ah) = eiah F 
(-l)'n!h n-r 

where: 
r=o (n-r)!(ia)r+l 

_ (-l)ne-iah n! h"-' 
rio (n-r)! (ia)r+l 

n+2 6/2 
1.2. an+2$n(z) = & / (zf)neiaiz-z' ldzf 

-d/2 
. -2 (-l)neiaz+e-iaz 

=1 il 2 

ia 
e2 h(a6) 

-f 2 
l+(-l)m 

m=o 
n! (az)” 

(n-m) ! (iaz)m 
1 

where: 
ia m m=o (n-m) ! (- 2) 

1.3. an-k+2+n(k)(z) = a 6 6 --< z< - 2- -2 

= ik-2 
[ 
(-l)neiaz+(-l)~e~i"z 

ia 

2 
e2 

L,(a61 

_ njk l+(;llm 
m=o 

n! (az)n n+k l 
(n-m-k)!(iaz) 



3o 1.4. ci n-k+z4 
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0) iol z=o 

(1) both n and k are not odd integer 
ia 

n-k+29 Q (k) ~01 = ik-2 e2 L (d) 
n n 

iaS 
-k-2 2 L =1 ce n 

(&) _ n!+ 
.n 1 

(2) both n and k are odd integer 

a n-k+2$ 
n 

(k) lo] = _ ikm2eF L,W I 

id 

= -i k-2 
Ie n 

zL (&) +n! 
i n3 

(3) only one of n and k is odd integer 

a n-k+2$ 
n 

Ud [ol = o 

n+2$ln(z) = 
n iaz 

1.5. a C-1) e 
2i2 

R, (a6 ) 

e -iaz 
= --4$&d) 

2i2 

1.6. a n-k+2 $,(Z> = 
(-l.)n(i)keiaz 

2i2 

k -iaz = (-iI e 
2i2 

RnW I 

where Rn(a5) = e 

fern< k 

for n > k - 

for n c k 

for n > k 

for z 2% 

forz< -; 

6 for z ~3 

for z 2 - $ 

ictSn 
-(-l)ne 2 1 

n! (e)” 
icb6 m m=o (n-m) !(+l 



APPENDIX II 

EVALUATION OF SOME VOLUME INTEGRALS FOR 
THE SPHERICAL INHOMOGENEITY PROBLEM 

From Ref.[6,8], we obtain: 

11.1. d> = //I ex YR1 dV' 
P 

n 

31 

+ 
r inside Sz 

(n-&-k) 
exP ,ipr’ &I dy’ dz’ 

nth power of x 

+ where: R = (r - ? 1 

,(n> ,m 
pq...v 

,(n>,m 
pq...v = /I/ p(;q axf;i:"2m-f dV' 

n P tax v 

p(f') = 1 

11.2. $k!Z...s (;) = j/J, xix;...x; exp;iaR) dV' 

= (-1)" 
: 7 xpxq- - -xv 

n=o 
nth power of x 

+ r inside Q 

[ mio '-L! 
ma2m ,Cn> ,m 

pq...v + i m!l (-l)(2m-l)! 
m-1a2m-1 ,(n),m 

= pq.. .,I 



In what follows we develop these formula specially for a sphere of 

radius a: 

11.3. ,(n> ,m 
pq...v and S(n)'m for p(f) = 1 and Q is sphere pq...v 

(1) c(o)- = 4z gg 

sb) ,m = 4n a2m+1 
2m+l 

(2) cf)sm = 0 for m=O 

= $2m-l)a2m6pq 

S(21,m = 
Pq 

$2m-2)a2m-16pq 

(3) c;;(&m = 0 for m=O,l 

= (2m-1)(2m-3)2m a2m-2 F- 

= (2m-1)(2m-3)2m a2m-2 $J 

= 0 

S(4),m 
pquv 

= (2m-2) (2m-4) (2m-l)a2m-3 9 

= (2m-2)(2m-4)(2m-1) a2m-3 $J 

= 0 

p=q=u=v 

for any two equal pairs 
of indices 

otherwise 

p=q=u=v 

for any two equal pairs 
of indices 

otherwise 
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pqu...v and S(n)'m for o(Tf) = xl and s2 is sphere pq...v I 

(1) Ckl) 3m = (zt;i’ a2m+2 F6 pi 1 

sUl ,m 2m-2 2m+l 4TI 
P =2m+la TS Pi 

(2) c;;;jm = 0 for m=O 

= (2m-1)(2m-3)a2" 

= (2m-1)(2m-3)a2m 

= 

s (31 ,m 
Pqu 

= (2m-2)(2m-4)a2m-1 

= (2m-2)(2m-4)a2m-1 

= 

4ll 
5 

p=q=u=i 

41[ 
15 

for any two equal pairs of 
indices 

0 otherwise 

4rI 
5 

P=q=u=i 

4l-I 
15 

for any two equal pairs of 
indices 

0 otherwise 

(3) c;;;;; = 0 for m=O,l 

= (2m-l)(*m-3)(2m-5)2m a2m-2 . D 
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D= F i=p=q=u=v=w 

I i=p q=u=v=w 
D= 2 I- p-q i=u=v=w 

D= $ i=p q=u v=w 

D= 0 otherwise 

p,q,u,v,w can change the 
order arbitrarily 
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pquvw 

= (2m-2)(2m-4)(2m-6)(2m-l)a2m-3 l D 

D = 4n 
7 

i=p=q=u=v=w 

D = 4n 
i=p q=u=v=w 

35 ip=q i=u=v=w 

D= x 
10.5 i=p q=u v=w 

D=o otherwise 

11.5. 
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e x' ey' eZ are direction cosines 
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Fig. 1 Geometry and material DroFerties of the three-layered 
medium 
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Pig. 2 Geometry and material gro?erties of an elastic 
spherical inhomoEeneity 5n an infinite elastic 
medium 
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Fig. 3 Displacement amplitude as a metion ofold for the 
three-layered problem, Ge in Al, with h=l.O 
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Fig. 5 Displacement amplitude as a function ofq 6 for the 
three-layered problem .Be in Polythylene, with h=l.O 
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Fig. 6 Displacement amplitude as a function of 7 6 for the 
three-layered problem, Mg in Stainless Steel, 
with h=l.O 
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Fig. 7 Displacement amplitude as a function ofc9 6 for the 
three-layered problem, Stainless Steel in Mg, 
with h=l.O 
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Fig. 8 Stress amplitude as a iknction ofq 6 for the three- 
layered problem, Ge in Al, with htl.0 
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Fig. 9 Stress amplitude as a iunction of 4 6 for the three- 
layered problem, Al in Ce, with h=l.O 
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Fig. 10 Stress amplitude as a function of q 6 for the three- 
layered problem, Be in Polythylene, with h-1.0 
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Fig. 11 Stress amplitude as a diction of 9 6 for the three- 
layered problem, Mg in Stai.nless Steel, with h=l.O 
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Fig. 12 Stress amplitude as a function of 4 6 for the three- 
layered problem,Stainless Steel in Mg, uizh h=l.O 
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Fig. 13 Displacement amplitude as a function of q 6 for the 
three-layered problem, Ge in Al, with f=l.O 
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Fig. 14 Displacement amplitude as a function of 6 
4 

for the 
three-layered problem, Al in Ge, with f= .O 
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Fig. 15 Displacement amplitude as a function of q 6 for the 
three-layered problem, Be in Polythylene, with f31.0 
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Fig. 16 Diiplacement amplitude as a function of 7 6 for the 
three-layered problem, Mg in Stainless Steel, 
with -1.0 
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Fig. lj Displacement amplitude as a function of a16 for the 
three-layered problem, Stainless Steel in Mg, 
with f=l.O 
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Fig. 18 Stress amplitude as a function of al 13 for the three- 
layered problem, Ge in Al, with 131.0 
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Fig. 20 Stress.amplitude as a function of at 6 for the three- 
layered problem, Be in Polythylene, with f=l.O 
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Fig. 21 Stress amplitude as a function ofq 6 for the three- 
layered problem, Mg in Stainless Steel, with f=l.O 
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Fig. 22 Stress amplitude as a function of al 6 for the three- 
layered problem, Stainless Steel in Mg, with B1.0 
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Fig. 23 Displacement amplitude as a function of Cq 6 for the 
three-layered problem, Cc in Al 
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Fig. 24 Displacement amplitude as a Arnction of q d for the 
three-layered problem, Al in Ge 
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Fig. 25 Displacement amplitude as a function of al ~5 for 
the three-layered problem, Be in Polythylene 
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Fig. 26 Displacement amplitude as a diction of aId for the 
three-layered problem, Mg in Stainless Steel 
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Fig. 27 Displacement amplitude as a function Ofal d for the 
three-layered problem, Stainless Steel in Mg 
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Fig, 28 Stress amplitude as a f%nction of a1 6 for the 
three-layered problem, Ge in AI 
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Fig. 29 Stress anqlitude as a function of q 6 for the 
three-layered problem, Al in Ge 
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Fig. 30 Stress amplitude as a function of q 6 for the 
three-layered problem, Be in Polythylene 
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Fig. 3 Stress amplitude as a diction of q ' for the 
three-layered problem, Mg in Stainless Steel 
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Fig. 32 Stress amplitude as a function of al d for the 
three-layergd problem, Stainless Steel in Mg 
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Fig. 34 Scattering cross section as a function of d,a 
for the spherical inhomogeneity problem, Al in Ge 
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Fig. 35 Scattering cross section as a function of d,a 

for the spherical inhomogeneity problem, Xg in 

Stainless Steel 
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Fig. 36 Scattering cross section as a f'unction of ala 
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Fig. 37 Scattering cross section as a function of low ala 

for the spherical inhomogeneity problem, Ge in Al 
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Fig. 39 Scattering cross section as a function of low' &a 
for the spherical inhomogeneity problem, Mg in 
Stainless Steel 
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Fig. 41 Displacement amplitude at the point z/g ~0.5 as 
a !knction ofal$ for the three-layered problem, 
Stainless Steel in Mg 
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Fig. 42 Stress amplitude at the point z/g=O.5 as a function 
of alsfor the three-layered problem, Stainless Steel 
in Mg 
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Fig. 43 Displacement amplitude at the point z/J-=0.5 as a function 

of f for the three-layered problem at the wavenumber 
ai 6=2.0 and hd. 
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Fig. 44 Displacement amplitude at the point z/$=0.5 as a 
iunction of f for the three-layered problem & the 
vavenumberc d,i=lO.O and h=l.O 
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Fig. 45 Stress amplitude at the point z/$=0.5 as a function of f 
for the three-layered problem at the wavenumberd,~=2.0 
and h--L.0 
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Fig. 46 Stress amplitude at the pjint z/J =0.5 as a function of f 
for the three-layered problem at the wavenumber~,s=lO.O 
and h=l.O 
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Fig. 47 Displacement amplitude at the point z/$=0.5 as a function 

of h for the three-layered problem at the wavenumber 
d,$ =2. and f=l.O 
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